- Сложный процент
- Понятие
- Суть
- Где используется
- Банковские вклады
- Облигации
- Акции
- Инвестиционный портфель
- Формула расчета
- Простой процент
- Сложный процент с начислением дохода 1 раз в год
- Сложный процент с начислением дохода чаще, чем 1 раз в год
- 1. Сложный процент с начислением дохода ежедневно
- 2. Сложный процент с начислением дохода ежемесячно
- 3. Сложный процент с начислением дохода ежеквартально
- 4. Непрерывное начисление процентов
- Ключевые параметры при расчете
- Процентная ставка
- Стартовый капитал
- Расчетный период
- Частота начисления процентов
- Частота дополнительных взносов
- Сравнение простого и сложного процентов
Чтобы повысить доходность вложений, необходимо учесть и просчитать множество факторов: годовая ставка, расчетный период и многое другое, в том числе и метод начисления процентов. Помимо привычного дохода в размере определенного процента от основной суммы, у банков есть предложения с капитализацией процентов, что иначе называется «сложный процент». Что это такое, в чем его суть и механизм работы, как посчитать доходность по формуле – в материале РИА Новости.
Сложный процент
Большинство начинающих вкладчиков оценивают возможную доходность вложений только по предлагаемой банком процентной ставке. Но, чтобы получить максимум возможного, важно учитывать не только размер процента, но и метод его начисления. В частности, это относится к выбору между простым и сложным процентом.
Понятие
По словам Романа Чечушкова, руководителя направления инвестиционной аналитики банка «Ренессанс Кредит», сложные проценты – это проценты, рассчитанные как на сумму вложенных средств, так и на «набежавшую» по ним сумму. Другими словами – это проценты, которые вкладчик или инвестор зарабатывает на процентах.
Суть
Простой процент рассчитывается единожды на основную сумму вклада. Суть сложного зачастую сравнивают со снежным комом – так как проценты начисляются и на сумму вложений и на проценты за прошлые периоды, то все начинается с «маленького кома» и с каждым годом (или другим расчетным периодом) он увеличивается сколько угодно раз, пока инвестор не снимет вложения со счета. Именно поэтому сложный процент выгоден для долгосрочных вкладов.
Совместное отделение Сбербанка и McDonalds в Москве
«Суть сложного процента можно проиллюстрировать с помощью простого примера: если на банковском вкладе лежит 1 000 рублей и они приносят 10 % годовых, то в конце первого года у вкладчика будет 1 100 рублей, а в конце второго года – 1 210 рублей. То есть инвестор заработал не только 200 рублей на начальном депозите в 1 000 рублей, но и 10 рублей на 100 рублях, начисленных в качестве процента за первый год. Несмотря на небольшую сумму начисленных процентов, с увеличением срока инвестирования процентная база будет расти и через 10 лет с тем же капиталом можно будет заработать 2 594 рубля, из которых на сложные проценты приходится 594 рубля, то есть 37 % от дохода», – дополнил Роман Чечушков.
Где используется
Сложный процент применяется во многих инвестиционных продуктах. Роман Чечушков разъяснил особенности его расчета в зависимости от сферы применения.
Банковские вклады
Многие банки используют сложные проценты в планировании вкладов и предлагают различные условия. Главное отличие для вкладчика – это период капитализации вклада, то есть период начисления процентов. Самый распространенный период капитализации – ежемесячный. Также существует ежедневный (зачастую с минимальной ставкой), ежеквартальный, полугодовой, ежегодный и единоразовый с начислением процентов в конце срока вклада. Например, клиент открывает вклад на сумму 500 000 рублей, на 12 месяцев и под 8 % годовых с ежемесячным начислением. К концу срока вклада на его счету будет 500 000*(1+8%/12)12 = 541 499 рублей (первоначальная сумма вклада и накопленные проценты). Таким образом, чем больше срок вклада и чаще начисление процентов, тем большее приращение за счет сложных процентов получает вкладчик.
Посетители в отделении банка
Облигации
Реинвестирование дохода по купонам облигаций схоже с получением процентов по вкладу. Инвестор покупает облигации на сумму 500 000 рублей со ставкой купона 8 % и выплатами ежеквартально. То есть за первый квартал инвестор получит 2 % купонного дохода и на счету будет 510 000 рублей, после реинвестирования, за второй, третий и четвертый кварталы, процент будет начисляться не на первоначальную сумму вложения, а на сумму этого вложения и купонного дохода к этому периоду. Соответственно, на конец первого года, инвестор будет иметь 541 216 рублей или 41 216 рублей купонного дохода с реинвестирования, итого 8,2 % дохода за 1 год.
Акции
Еще одним способом увеличить свое состояние за счет сложных процентов является реинвестирование дивидендов по акциям. Если на полученные дивиденды докупать акции, то сумма дивидендов со временем сама начнет приносить часть новых дивидендов. Предположим, что инвестор купил 10 акций по 100 рублей, сумма дивидендов за первое полугодие составила 10 рублей на одну акцию, тогда сумма его дивидендов составит 100 рублей. Если эти средства реинвестировать в эти же акции, то у инвестора будет уже 11 акций. В конце года дивиденды, выплаченные за 12 месяцев, также составили 10 рублей на акцию, тогда за второе полугодие инвестор заработает 110 рублей, из которых 10 рублей будут дивиденды, начисленные на акции, купленные путем реинвестирования ранее выплаченных дивидендов.
Инвестиционный портфель
Сложный процент может применяться не только в отношении одной ценной бумаги, его также можно использовать для всего инвестиционного портфеля. К примеру, инвестор может на дивиденды от облигаций купить акции другой компании. После заработать на росте цен, продать акции, а прибыль вложить в другие финансовые операции. Сложность заключается в том, что предугадать доходность для всего портфеля достаточно сложно, одна невыгодная продажа акций может также снизить доходность выгодной покупки. Или, например, дивиденды упадут, что также негативно отразится на всей доходности инвестиционного портфеля.
Знак процента на витрине
Формула расчета
Как простой, так и сложный процент имеют свои формулы расчета, по которым можно заранее просчитать прибыль.
Простой процент
Роман Чечушков отмечает, что формула простого процента выглядит следующим образом:
, где:
- —S – общая накопленная сумма на конец периода с процентами
- —P – сумма первоначальных вложений
- —I – годовая ставка (%)
- —T – срок вложения в днях
- —N – количество дней в году (365 или 366)
На примере это работает так: если вкладчик внесет на депозит 100 000 рублей сроком на 11 месяцев под 3 % годовых, то его процентный доход составит:
Сложный процент с начислением дохода 1 раз в год
, где:
- —S – общая накопленная сумма на конец периода с процентами
- —P – сумма первоначальных вложений
- —I – годовая ставка (%)
- —T – срок вложения в годах
Эксперт отмечает, если вкладчик внесет на депозит 100 000 рублей сроком на 3 года под 3% годовых, то его процентный доход составит:
Сложный процент с начислением дохода чаще, чем 1 раз в год
Роман Чечушков отмечает, что можно выделить несколько ситуаций с начислением дохода чаще 1 раза в год:
1. Сложный процент с начислением дохода ежедневно
В такой ситуации необходимо воспользоваться формулой:
, где:
- —S – общая накопленная сумма на конец периода с процентами
- —P – сумма первоначальных вложений
- —I – годовая ставка (%), разделенная на 100
- —T – срок вложения в днях
- —N – количество дней в году (365 или 366)
Если вкладчик внесет на депозит 100 000 рублей сроком на 11 месяцев под 3 % годовых, то его процентный доход составит:
2. Сложный процент с начислением дохода ежемесячно
Формула в таком случае схожа с начислением дохода ежедневно:
, где:
- —S – общая накопленная сумма на конец периода с процентами
- —P – сумма первоначальных вложений
- —I – годовая ставка (%), разделенная на 100
- —T – срок вложения в месяцах
Если вкладчик внесет на депозит 100 000 рублей сроком на 11 месяцев под 3 % годовых, то его процентный доход составит
3. Сложный процент с начислением дохода ежеквартально
Для расчета берется формул
, где:
- —S – общая накопленная сумма на конец периода с процентами
- —P – сумма первоначальных вложений
- —I – годовая ставка (%), разделенная на 100
- —T – срок вложения в кварталах
Если вкладчик внесет на депозит 100 000 рублей сроком на 11 месяцев (3,667 квартала) под 3 % годовых, то его процентный доход составит:
4. Непрерывное начисление процентов
При непрерывном начислении процентов берется формула:
, где:
- —S – общая накопленная сумма на конец периода с процентами
- —e – экспонента
- —I – ставка непрерывных процентов (%), разделенная на 100
- —T – срок вложения
- —P – сумма первоначальных вложений
Если вкладчик внесет на депозит 100 000 рублей сроком на 11 месяцев под 3 % годовых, то его накопления через 11 месяцев составят:
Необязательно знать наизусть все эти формулы или постоянно их применять. Сейчас существует большое количество онлайн-калькуляторов для расчета доходности сложного процента в разных ситуациях.
Ключевые параметры при расчете
На сумму, которую в итоге получит инвестор (или вкладчик) в конце расчетного периода, зависит от ряда ключевых параметров.
Процентная ставка
В отношении вкладов, это доход, который получает вкладчик за определенный расчетный период, – например, 5 % годовых, то есть за год доход составит 5 % от суммы вклада. Размер ставки устанавливает непосредственно банк и чем она выше, тем больше будет доход.
Стартовый капитал
Это сумма, которую инвестор готов вложить в ценные бумаги или вкладчик готов положить на счет для дальнейшего преумножения.
Расчетный период
Это временной промежуток, в течение которого инвестор или вкладчик планирует получать доход. Чем он дольше, тем больше будет накопленная в итоге сумма.
Вкладчик
Частота начисления процентов
Проценты могут начисляться ежегодно, ежеквартально, ежемесячно и даже ежедневно. В отношении вкладов условия зависят от конкретного банка. Чем чаще будут начисляться проценты, тем выше будет скорость увеличения накоплений.
Частота дополнительных взносов
Для кратковременных вкладов дополнительные взносы практически не имеют заметного эффекта. А вот начиная с 5–7 года накопления, можно явно ощутить, как наращивается тот самый «снежный ком».
Сравнение простого и сложного процентов
Проще всего сравнить доходность простого процента и сложного – наглядно проследить начисление прибыли. К примеру, вкладчик решил положить на счет 200 000 рублей на 12 месяцев под 12 % годовых. Если он выберет простой процент, то в конце расчетного периода он получит 224 000 рублей, где 200 000 – основная сумма вклада, а 24 000 – полученные проценты. Если он выберет сложный процент с ежемесячным начислением, то сумма его вклада будет меняться следующим образом:
Месяц |
Изначальная сумма |
Сумма в конце |
Доход |
Январь |
200 000,00 |
202 000,00 |
2 000,00 |
Февраль |
202 000,00 |
204 020,00 |
2 020,00 |
Март |
204 020,00 |
206 060,20 |
2 040,20 |
Апрель |
206 060,20 |
208 120,80 |
2 060,60 |
Май |
208 120,80 |
210 202,01 |
2 081,21 |
Июнь |
210 202,01 |
212 304,03 |
2 102,02 |
Июль |
212 304,03 |
214 427,07 |
2 123,04 |
Август |
214 427,07 |
216 571,34 |
2 144,27 |
Сентябрь |
216 571,34 |
218 737,05 |
2 165,71 |
Октябрь |
218 737,05 |
220 924,42 |
2 187,37 |
Ноябрь |
220 924,42 |
223 133,66 |
2 209,24 |
Декабрь |
223 133,66 |
225 365,00 |
2 231,34 |
По итогу расчетного периода вкладчик получит 225 365 рублей, где 200 000 – основная сумма вклада, а 25 365 – начисленные проценты. В условиях одного года эта разница может показаться незначительной. Но не просто так сложный процент сравнивают со снежным комом – чем длиннее расчетный период и чаще начисление процентов, тем больше и ощутимее будет доход.
Монеты